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Table 5. Comparison of the Lorentz factors L, defined 
in (23a) and (23b)for  the Umweganregung events of 
the 'almost forbidden' 222 reflection of diamond, 
marked in Figs. 9 and 10, calculated for Cu Kot~ with 

A,~/,~ (~,) =0.000301 

Cell constant: a = 3.5667 A, 0prim = 48-43 °. 
L~0(P): ~p =Ss =0.01 °, r =  100 ~.m, 77=0.001 °, corresponding to 
Fig. 10(b). 
L~0(R): ~p = ~Ss = 1 °, r = 5 Izm, r /= 0.18 ° corresponding to Fig. 9(b). 

~.~ fl L~ L~ ( P ) L, ( R ) 
No. hop/hcoo p ( ) (o) (19c) (19a) 

1 313/111 0.458 4.78 25.65 25.74 28.61 
2 113/111 0.458 78.50 2.18 2.18 2.18 
3 113/13T 0.793 54.88 1.51 1.51 1.51 
4 313/131 0.916 26.25 2.42 2.42 2.42 

depend on the four parameters AA, 3, e and r/ in a 
distinct manner, UMWEG90 is an efficient tool for 
the determination of the divergence and wavelength 
spread of the incident beam as well as of the mosaic 
spread and block size in the sample. 

Furthermore, Figs. l (b) ,  (c), 9(a) ,  (b) and 10(a), 
(b) demonstrate the ability of UMWEG90 to predict 
the Umweganregung patterns for measurements 
carried out under very different experimental 
conditions. 
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Abstract 

Twinning can lead to a diffraction pattern with addi- 
tional reflections that are incommensurate with the 
reflections of a crystal with only one orientation of 
the structure. The integer indexing of such a diffrac- 
tion pattern involves more than three reciprocal-basis 
vectors. Analogously, for incommensurate crystals, 
the original number of ( 3 + d )  reciprocal vectors 
should be extended to a larger set for a twinned 
incommensurate crystal. In this paper, it is shown 

that the diffraction symmetry for a twinned crystal 
can be analyzed in a way analogous to the treatment 
of the symmetry of an incommensurate structure. The 
theory is implemented in a refinement program for 
X-ray and neutron diffraction data and allows all 
intensity data from isolated and overlapping reflec- 
tions to be taken into account. The method can also 
be applied to the refinement of ordinary crystal struc- 
tures. The program has been used to determine the 
modulated structure of the inorganic misfit layer com- 
pound (HoS)I.23NbS2. 

0108-7673/92/040610-09506.00 © 1992 International Union of Crystallography 
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Introduction 

The problem of structural analysis from diffraction 
data of a twinned crystal is well known. Surprisingly, 
the incorporation of the appropriate procedures in 
refinement programs is not a standard option. For 
example, the widely used crystallographic program 
packages X T A L  (Hall & Stewart, 1990) and S H E L X  
(Sheldrick, 1976) are not able to account for the 
effects of twinning. 

Twinning is defined as the occurrence of several 
orientations of a structure in a single block of 
material. Quite often, microcrystals of each of the 
different orientations are dispersed throughout the 
complete crystal with approximately constant 
densities. It is then not possible to separate the 
different twin individuals physically and the diffrac- 
tion pattern will have contributions from all domains. 

There are several different ways in which twinning 
can affect the diffraction pattern. For example, for 
an orthorhombic structure with two lattice constants 
equal, two orientations of the orthorhombic structure 
can occur, which are related by a fourfold axis. All 
reflections will have contributions from both twin 
domains, which in principle are different in magni- 
tude. An already more complicated situation is illus- 
trated by an orthorhombic structure with a = 2b. If 
such a crystal occurs as a twin, with both domains 
related by a fourfold c axis, reflections with h even 
will have contributions from both domains, while 
reflections with h odd are due to the first domain 
only. A further complicating factor is that there are 
also reflections entirely due to the second domain, 
which cannot be indexed on the unit cell of the first 
domain, i.e. they would have half-integer k indices. 

Generally, a diffraction pattern will have joined 
spots where reflections of different twin domains 
overlap and it will have isolated diffraction spots 
where only single domains contribute. To be able to 
take into account all diffraction spots simultaneously, 
a refinement program should generate a sum of 
intensities for the former positions, while it should 
calculate the structure factor of a single domain for 
the latter. 

The most difficult problem in the analysis of twin 
data is the possibility of partially overlapping reflec- 
tions. This can, for example, occur in monoclinic 
compounds. For a structure characterized by y* # 90 ° 
and with a common b'c* reciprocal-lattice plane 
between the two twin domains, the second domain 
can be defined by y*(II) = (180-  y*). Depending on 
the exact magnitudes of the lattice parameters, there 
will be diffraction positions where reflections of both 
twins can be closer to each other than the experi- 
mental resolution. In this case, it should be ensured 
during data collection that separate intensities are 
measured for each diffraction position, or that all 
intensity is measured in a single scan. For the 

refinement program, one should then be able to indi- 
cate which domains contribute to each individual 
diffraction position. In practice, the solution to this 
problem will often be to exclude the lines or layers 
in reciprocal space for which there is partial overlap 
of reflections. 

Inorganic misfit layer compounds are a simple 
example of the more general class of incommensurate 
intergrowth crystals (Makovicky & Hyde, 1981; 
Wiegers et al., 1989; Janner & Janssen, 1980; van 
Smaalen, 1991a, b). Their structures can be character- 
ized as an alternate stacking of two chemically 
different layers (Fig. 1). One fraction of the atoms 
(e.g. the NbS2 layers) have an ordered structure 
according to one unit cell, while the remaining frac- 
tion (e.g. the HoS layers) are ordered according to a 
second unit cell. Both lattices are incommensurate 
with respect to each other. This means that an integer 
indexing of the diffraction pattern of a single-domain 
crystal will require four or more basis vectors. 

In this paper we will show that the indexing prob- 
lem related to twinning can be solved by using four 
or more basis vectors, in a way much resembling the 
higher-dimensional analysis of incommensurate crys- 
tals. For a twinned incommensurate crystal, both the 
incommensurateness inherent to the structure and the 
incommensurateness due to the twinning may give 
rise to additional basis vectors for indexing the 

C~ 2~2 

• - - ~ Q ?  b I : b 2 

(a) (b) 

Fig. 1. The structure of the inorganic misfit layer compound 
( HoS)I23NbS 2 . (a) Projection along the incommensurate a axis; 
(b) projection along the common b axes. Large circles denote 
sulfur atoms, small circles correspond to the metal atoms in their 
respective subsystems. 
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diffraction spots. The multiple-indexing approach is 
shown to provide an efficient algorithm for deciding 
which of the domains contributes to the intensity at 
each diffraction position. In this way, the present 
approach is more general than several others 
[ R E M O S 8 5  by Yamamoto (1985) and P R O M -  
E T H E U S  by Zucker, Perenthaler, Kuhs, Bachmann 
& Schulz (1983)], where it is assumed that all diffrac- 
tion positions have contributions from all domains 
(twinning by merohedry). With this method, the inor- 
ganic misfit layer structure of (HoS)~ 23NbS2 is solved. 

Theory 
The crystallography of incommensurate crystals is 
now well established (Janner, Janssen & de Wolff, 
1983; Cummins, 1990; van Smaalen, 1991a, 1992; 
Steurer, 1990). All different kinds of incommensurate 
phases, modulated crystals, intergrowth compounds 
and quasicrystals have in common that an integer 
indexing of their diffraction patterns requires (3 + d) 
reciprocal-basis vectors, with d a positive integer. A 
common property with ordinary thre~-dimensional 
translationally symmetric crystals is that the intensity 
in each diffra~,tion spot is proportional to the absolute 
square of the Fourier transform of the electron 
density, i.e. to the absolute value of the square of the 
structure factor. 

A basic assumption of the present approach is that 
all individual twin domains have an identical struc- 
ture, each of which gives rise to diffraction spots 
at positions expressed as integral combinations of 
(3 + d) reciprocal vectors. The relation between these 
domains can be described by a set of orthogonal 
twinning operators that forms a group G3- of order n. 

Let M ~ = { a * , . . . , a * + d }  be the set of ( 3 + d )  
reciprocal-basis vectors describing the first twin part. 
The twinning operators Tk c Gr  will transform this 
set into 

Mk = { Tka*, . . . , Tka*~} (1) 

for k =  1 , . . . ,  n, where Ti is chosen as the unit 
operator. This generates a total of n(3 + d) vectors, 
for which a new basis M , = { b * , . . . , b * }  of m 
rationally independent reciprocal vectors can be 
selected such that any diffraction spot has an integer 
indexing with respect to M,. As few vectors b* as 
possible are chosen, which leads to ( 3 + d ) -  < m - <  
n(3 + d). The lower limit represents a similar situation 
to the twinning by merohedry or by pseudomerohedry 
with obliquity equal to zero of regular crystals (Catti 
& Ferraris, 1976). The higher limit represents twin- 
ning without overlapping of the diffractions spots of 
individual twin parts. 

Without loss of generality, the first (3 + d) vectors 
of M, can be chosen as the vectors comprising Ml.  
The remaining m - ( 3  + d) vectors play a similar role 

to the modulation vectors for modulated and inter- 
growth structures. The main difference is that there 
are no satellites in addition to the sets of main reflec- 
tions, as the assumption was made that the diffraction 
pattern can be created as a pure summation of the 
diffraction patterns of the n individual domains. This 
method is similar to the one for composite crystals, 
but without the interaction between the different twin 
parts. 

From the selection of the basis M,, it is clear that 
the vectors Tkb* ( i = l , . . . , m )  can again be 
expressed as an integral combination of the basis M, : 

Tkb*= ~ b*Tj,(k). (2) 
j = l  

This provides an m-dimensional matrix representa- 
tion for the operators Tk of the twinning group. 

Let Vg (k = 1 , . . . ,  n) be the volume fraction of the 
kth individual twin domain, constrained by the nor- 
malization condition 

Vk = 1. (3) 
k = l  

Then, the corrected intensity for the diffraction posi- 
tion, defined by the m integer indices H =  
( H ~ , . . . ,  H,,), can be expressed in terms of structure 
factors of individual twin parts, 

I ,(H) = ~ VkF2(TkH) f i  t~[(TkH)j, 0], (4) 
k = l  j = 4 + d  

where F(H)  is equal to the structure factor 
F ( H t , . . . ,  H3+d) of a single domain, taken as a func- 
tion of the first 3 + d elements of its argument. The 
function 6 represents the Kronecker delta; it is one 
if the arguments are equal and is otherwise zero. In 
this way, overlap of reflections of the individual 
domains is easily detected. 

A procedure based on (5) has been incorporated 
in the program C O M P R E F  (PetH~ek, Maly, Coppens 
et al., 1991) of the program system J A N A  (PetH~ek, 
Maly & Cisarova, 1991). It has been used to determine 
the structure of the inorganic misfit layer compound 
(HoS)t.23NbS2, as reported in the remainder of this 
paper. 

Experimental 
The synthesis of the compound and the details of the 
X-ray diffraction have been described by Wiegers, 
Meetsma, Haange & de Boer (1992). The present 
analysis started from the basic structure they deter- 
mined and the original measured intensities. 

All reflections could be indexed on three mono- 
clinic unit cells, chosen with unique b axes. Two of 
them, corresponding to NbS2(I) and NbS2(II), were 
connected by a twofold axis along the a direction. 
The fact that the ratio of integrated intensities of two 
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corresponding diffraction spots was, within the 
accuracy of measurement, constant led to the con- 
clusion that the studied compound was a twin. The 
twinning operator can be taken as the twofold axis 
along a. The HoS subsystem has a pseudo-ortho- 
rhombic lattice, which means that the lattices of the 
expected twin individuals coincide. 

Lattice parameters and their standard deviations 
for these three lattices were determined from the 
setting angles of 23 reflections in four alternate set- 
tings (Wiegers, Meetsma, Haange & de Boer, 1992). 
For the NbS2(I) subsystem, we have a t,~ =3.312 (1), 

1 I al2 = 5.661 (1), at3 = 22.250 (14) A and /3i, _- 
93.01 (3) °. The lattice parameters for the HoS sub- 
system are: a2~=5.396 (1), a22=5.661 (1), a23= 
22.195 (8),~ and /32=90.19 (3) °. The lattice param- 
eters determined for the second twin individual of 
NbS2 are equal to the first within standard deviations" 

II an=3.313(1),,~ a~2= 5.662 (1), a11=22.246(16)~,~3 
/3~,~ = 93.01 (3) °. The lattice parameters of I have been 
used in the present analysis. 

To facilitate the superspace description as well as 
the comparison with other misfit compounds, the c 
axis of the NbS2 lattice has been doubled. In addition 
to the C centering, this introduces the centering trans- 
lation (0, 0, ½). The HoS lattice is F centered. 

The twinning matrix defining the relation between 
unit-cell vectors of two NbS2 lattices was calculated 
from the experimentally determined orientation 
matrices according to 

T=(OII)-'O ', (5) 

where O x and O n are the orientation matrices for 
NbS2(I) and NbS2(II) domains, respectively. The 
twinning matrix is ('0 0!) 

T =  -1 . (6) 

-0.716 0 - 

From (6) it follows that reflections 3n,k,l of 
the NbS2(I) domain are very close to reflections 
3n, -k , l -n  of the NbS2(II) domain. The overlap is 
not exact (except for n = 0). The corresponding split- 
ting of several 3,k,l spots was observed on the diffrac- 
tometer. As it is very difficult to correct for such partial 
overlapping, we did not use the h = 3 (n = 1) reflec- 
tions in our analysis (the maximum value of h in the 
experiment was 5). From the lattice parameters, one 
can calculate that the 31 component of the matrix 
describing a twofold axis along a is equal to -0.706, 
to be compared with the experimental value of 
-0.716. It thus follows that the 2x axis can be taken 
as the twinning operator. 

For the HoS subsystem, no splitting of diffraction 
spots could be observed. This can be attributed to 
the monoclinic angle/3 being close to 90 °. The expec- 
ted 31 component of the twinning matrix for the 2x 

axis in this subsystem is -0.03, apparently too small 
to be observed. It is therefore assumed that the 
measured intensities of the pseudo-overlapping 
reflections are always the sum of intensities of the 
individual domains. 

The twinning operator is of order two and only 
two domains were found. The structure factors for 
the overlapping spots are thus a sum of two indepen- 
dent contributions, 

F2(hkl)=(1-v)F2(hkl)+vF2(hk.[), (7) 

where v is the volume fraction of the second domain. 

Space-group symmetry 

Each twin domain in the crystal of (HoS)t.23NbS2 is 
composed of the two subsystems NbS2 (v = 1) and 
HoS (v = 2). All reflections will have contributions 
from both subsystems, for which structure factors 
rather than intensities should be combined (van 
Smaalen, 1991c, 1992). The analysis of the structure 
and diffraction of misfit layer compounds makes use 
of the so-called superspace description (Janner & 
Janssen, 1980; de Wolff, Janssen & Janner, 1981; van 
Smaalen, 1991a, b, 1992). It has been described pre- 
viously for (SnS)1.17NbS2 (van Smaalen, 1989), 
(LaS)~.t4NbS2 (van Smaalen, 1991c), (PbS)~.~sTiS2 
(van Smaalen, Meetsma, Wiegers & de Boer, 1991), 
(LaS)t.2oCrS2 (Kato, 1990) and (PbS)~.t2VS2 (Onoda, 
Kato, Gotoh & Oosawa, 1990). 

For a single domain, the reciprocal lattices describ- 
ing the basic structures of the subsystems can be 

= {a ~ t ,  a ' v 3 } .  As for all misfit layer expressed as A ~ * * a v 2 ,  

a,3) plane common (a , : ,  is to the compounds, the * * 
primitive reciprocal lattices of the two subsystems 
NbS2 and HoS. An integer indexing of the complete 
diffraction pattern of a single domain can then be 
obtained with four reciprocal vectors. This set M = 
{ a * , . . . ,  a*} was chosen as a* = a1"1, a* = al*2, a3* = 

a*3, a4* = a*l. The superspace is obtained by consider- 
ing the elements of M as the projections of the 
reciprocal-basis vectors in four-dimensional space. 

The basis vectors of the subsystem reciprocal lat- 
tice, A*~, are a linear combination of the set M, 

4 
a*, X ~ * = Zikak. (8) 

k = l  

The fourth vector in M can be expressed as a linear 
combination of the first three vectors, thus defining 
the tr matrix, 

tr = (a0 0 T)= (0.614 0-0.203).  (9) 

The interaction between the two subsystems makes 
each subsystem a modulated structure, with a modu- 
lation wave vector determined by the basic structure 
periodicities of the other subsystem. The modulation 
vectors can also be expressed as a linear combination 
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of vectors of the set M, 

4 
q ~ _ - y ~  ~ • Vikak. (10) 

k = l  

The 3× (3+1) matrix Z ~ and the 1 × (3+1)  matrix 
V ~ can be combined into a square nonsingular 
( 3 + 1 ) × ( 3 + 1 )  matrix W ~ as (van Smaalen, 1989, 
1991b, 1992) 

W j' ~ V~, . (11) 

This matrix gives A~, and q~ in terms of M. For the 
present definition of M, the matrices 

(i °°l) WI = 1 0 W 2  = 1 0 0 
0 1 0 1 0 (12) 

0 0 0 0 0 

are obtained. 
W ~ can also be considered as a coordinate transfor- 

mation in superspace. In particular, it gives the rela- 
tion between the subsystem indexing of the reflections 
and the indexing with respect to M, 

( H K L M ) = ( h ~ k ~ I ~ m ~ ) W  ~, (13) 

where m~ ~ 0 characterizes satellite reflections of sub- 
system u. The main reflections of the first subsystem 
give rise to HKLO reflections and of the second one 
to OKLM. As no satellite reflections were measured, 
reflections H K L M  with both H and M not equal to 
zero were not available for the present analysis. 

After the transformation to the superspace indexing 
(13), the symmetry and extinction condition of the 
diffraction pattern can be analyzed in the usual way. 
As for the individual subsystems, the diffraction pat- 
tern of the complete domain has monoclinic sym- 
metry, generated by (2yl) and (myl). Systematic 
extinctions for the H K L M  reflections were found to 
be H + K + M = 2 n + I ,  L + M = 2 n ÷ I  and H + K +  
L = 2 n + l  (n is an integer). This corresponds to a 
superspace centering given by the centering vectors 

(½ ½ o ~); 
I (0 0 ~ ½); (14) 

~- ~ 0 ) .  (~ ~ ~ 

The Bravais class is thus P" F2/m(aoO 7)11, where 
F is not the usual F centering but denotes the transla- 
tions in (14). Using the transformation o-'= (1 0 1) - o- 
and multiplying a* by two shows that the Bravais 
class is equivalent to P" C 2 / m ( 1 - a o O '  ~-  -),/2)i1, 
no. 4 in Table 1 of de Wolff, Janssen & Janner (1981). 
It is also part of the more general Bravais class B + 1 oh, 
as derived by Mermin & Lifshitz (1992). Reflection 
indices for the standard setting can be obtained as 
H + M , K , ( L +  M) /2 ,  - M (Peffffzek, 1989). 

Table 1. Symmetry operators of  the superspace groups 
and subsystem superspace groups 

Note :  n,, i = 1 , . . . ,  4 a s s u m e  all in teger  va lues .  All e l e m e n t s  m a y  
be  c o m b i n e d  with  the  c e n t e r i n g  t r a n s l a t i o n s  a n d / o r  any  la t t ice  
t r ans l a t ion .  T h e  pos i t i on  o f  the  or ig in  re la t ive  to the  s y m m e t r y  
e l e m e n t s  is g iven  by the  va lues  o f  ri ,  i = 1, 3, 4. In this  p a p e r  we  
use  "r i = O. 

(E l]nl ,n2 ,  n3, n 4) (E l[na, n2, n3, n I) 

(E ~ Io, o, ',, ~)_ (E 11'2, o, 2,' 0) 
2,2,0)  2, 2, 

(2, i l r , ,O ,  r3, r4) (2, i l r~,O, r3, r,) 

To test for possible translation parts of the 
operators, extinctions rules for the 0K00 and the 
HOLM reflections have been checked. None were 
found. However, the extinction conditions describing 
the centering reduce to H + M = 2 n + I ,  H + L =  
2n+ 1 and L+ M = 2 n +  1 for the HOLM reflections 
(n is an integer). As no reflections have been 
measured with both H and M nonzero, the first 
condition leads to H = 2 n + l  and M = 2 n + l  for all 
reflections included in the experiment (n is an 
integer). Only measurement of satellite reflections 
would make it possible to distinguish between H + 
M = 2 n + l  and the case H = 2 n + l  and M = 2 n + l .  
The former corresponds to the mirror plane 
(my 1]0,0,0,0).  The latter corresponds to a glide 
plane (my 1 ]0.5, 0, 0, 0). This leads to five possible 
superspace groups: P:F2y/m: , (aoO y)]-l, P: F2~,/ 
my( ao O y ) l  s, P: Fmy( ao O y) l ,  P: Fmy( ao O y)s, and 
P: F2y(ao 0 y)l .  

Analysis of the satellite intensities would make it 
possible to distinguish between the two centrosym- 
metric superspace groups or between the two Fm 
acentric groups. Based on an analysis of related struc- 
tures and in particular on the knowledge of the struc- 
ture of the individual layers, it can be inferred that 
the correct superspace group is non-centrosymmetric, 
Gs = P: F2y(Oto 0 y)7. 

With the W ~ matrices, the subsystem superspace 
groups and the subsystem space groups correspond- 
ing to Gs can be derived (van Smaalen, 1989, 1991a). 
The subsystem superspace groups are G~ = G~ and 
G~ = P: F'2y(ao~ O - y / a o ) l ,  where the F'-centering 
translation is obtained from (14) by interchanging 
the first and the last components. The subsystem space 
groups are the restriction of the corresponding super- 
space groups to the first three coordinates: G~ = C2 
and G2--F2.  The elements of G~ for both G.~"s are 
given in Table 1. 

Symmetry of the diffraction pattern 

As shown in the experimental section, the crystal is 
twinned by a twofold axis along the collinear a axes. 
For the pseudo-orthorhombic HoS subsystem, the 
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twofold twinning operator belongs to the lattice sym- 
metry and complete overlapping of the (reciprocal) 
lattices of both twin domains is assumed. Then no 
additional vectors are required for an integer indexing 
of the diffraction pattern. For the NbS2 subsystem 
the monoclinic angle is considerably different from 
90 ° . Within experimental error, it was found that the 
twin domains share the (al*2, a'a) reciprocal-lattice 
plane. To describe the diffraction pattern of the 
twinned NbS2 subsystem, one reciprocal vector is 
needed in addition to AI(I), for example a*l(II). 

The diffraction pattern of a single domain of 
(HOS)l.23NbS2 can be described by the set M of four 
reciprocal vectors. For the twinned crystal, one addi- 
tional vector is needed, leading to a set of five vectors, 
M , = { b * , . . . , b * } ,  defined by b*=a*l ( l ) ,  b*=a*2, 
b* = a*3, b* = a2*l and b* = a*l(II). The first four vec- 
tors are identical to M as defined for domain I. With 
respect to Mt, the matrix representation of the twin- 
ning operator 2x is 

/°0 ° ° ° i00/ 
0 -1 0 0 

T(2x) = 0 0 -1 0 . (15) 

0 0 1 

0 0 0 

Equations (2) and (4) assume that the indexing for 
a single domain is known. When only the indexings 
of the subsystem reflections in one domain are known, 
the indexing with respect to M, can be derived directly 
by application of matrices WT, defined analogously 
to the W" matrices of intergrowth compounds. The 
matrices W~ give the reciprocal lattices A~ and modu- 
lation wave vectors q; in terms of the set M,. As M, 
was chosen to equal M plus one additional vector, 
W~ can be obtained by juxtaposition of W ~ and the 
( 3 + d ) x ( m - 3 - d )  matrix with only zeros. As the 
modulation of one domain by periodicities of the 
other domain does not exist, it is not useful to define 
additional modulation vectors here. W~ therefore 
remains a matrix of rank (3 + d). 

With this definition of W~, the relation between 
the subsystem reflection indices and the superspace 
indexing is obtained as 

( H K L M ,  M2)=(h~k~I~m~)W~T'k, (16) 

where k = I, II denotes the twin domains and t defines 
transpose. The twin operator Tl is the unit matrix; 
the operator T.  is given by (15). For subsystems 
defined by (12) and twin domains defined by (15), 
explicit forms for (16) are: 

(H K L M l M2) = (hi kl l, m~ 0)t; 

(HKLM1M2)=(m2 k212 h20)1; 

(HKLM, M2)= ( 0 - k i - 1 ,  m I hl)ii; 
(17) 

(HK L M, M2) = (0 - k  2 -12 h 2 m2)tl. 

Table 2. Crystallographic R factors for the final fits 

Partial R factors are defined using a subset o f  the reflections. The 
NbS2 and HoS parts comprise  the main reflections o f  the corre- 
sponding  subsystem, excluding the c o m m o n  reflection OKLO. 
The NbS2 subset of  reflections includes 189 reflections 
measured on the second twin individual. The R factors are 

defined as RF=(EIIFob.~I-IF.,clI)I(EIF<>,,sI) 
[E w(I Fob.~l- I F.,<I)2/E wlFo~sl2] '/~. 

and RF ~ = 

Basic Modulated 
Reflection Number of structure structure 

subset reflections RF Rr9 R~ Rva 
All 1250 0.084 0.117 0.061 0.076 
NbS 2 part 508 0.120 0.160 0.063 0.073 
HoS part 668 0.062 0 . 0 8 2  0.056 0.075 
Common 74 0.094 0.104 0.082 0.092 

Reflections from domain I are characterized by M2 = 
0, while those from domain II have H = 0. 

The structure factor becomes [cf. (4)] 

2 F,w(HKLM, M2): (1-v )F2(HKLM,)8(M2,0)  

+ vF2(M2 K L MI)t~ (n ,  0). 

(18) 

It follows that all H = M2 = 0 reflections are common 
to the twin domains. These precisely form the main 
reflections of the HoS subsystems in either domain, 
which are thus completely overlapping. For the NbS2 
subsystem only the plane (0k111) is common between 
the twin domains. This happens also to be the com- 
mon reciprocal-lattice plane between subsystems in 
a single domain. 

It is noted that the twinning operator T~ only 
represents a symmetry of the diffraction pattern if 
v = 0.5. As we have found v # 0.5, T.  merely gives 
the symmetry of the reciprocal-point set. 

Structure refinement 

First, a refinement of the basic structure was per- 
formed. With the twin volume ratio v included in the 
refinement, a reasonable agreement between observed 
and calculated structure factors was obtained (Table 
2), essentially confirming the results of Wiegers, 
Meetsma, Haange & de Boer (1991). The high R 
factor for the NbS2 subsystem reflections can be 
explained by the modulation on the HoS subsystem. 
The 0k2121i first-order satellites of the latter are at the 
same time main reflections 1 klll0x of the first subsys- 
tem (van Smaalen, 1991c, 1992). 

In the basic structure only Nb is in a special posi- 
tion, on the twofold axis. For the complete structure, 
the superspace-group symmetry then leads to restric- 
tions on the modulation functions. For Nb on (0, y, 0) 
it is found that both u,, and Uz should be an odd 
function of x2~4, while uy is an even function of the 
same argument. 



616 R E F I N E M E N T  O F  I N C O M M E N S U R A T E  S T R U C T U R E S  

Table 3. Basic structure coordinates and temperature parameters (~2) as obtained by refinement of  the 
modulated structure 

Coordinates refer to the subsystem lattice basis. Standard deviations in the last digits are given in parentheses. The temperature factor 
that appears in the expression for the structure factor is defined by T = exp [-Y. 2 , , (27r U~ja~ia~ih~h,,;) ]. 

0 x° 2 o Xvl v xv3 

Nb 0 -0.0716 (5) 0 
Sl 0.0256 (9) 0.2639 (6) 0.07109 (12) 
Ho -0.0030 (3) 0 0.17521 (3) 
$2 0.4993 (13) 0.0081 (171 0.20114(14) 

Uil  U22 U33 UI2 UI3 U23 
Nb 0.0042 (5) -0.0018 (4) 0.0038 (5) 0 0.0000 (2) 0 
S! -0.0086 (69) 0.0011 (111 0.0046 (181 0.0032 (13) -0.001 (3) -0.0001 (10) 
Ho 0.0227 (4) 0.0124 (5) 0.0092 (4) 0.0084 (7) -0.0007 (5) -0.0001 (6) 
$2 0.0171 (24) 0.0121 ( 161 0.0030 ( 11 ) 0.0005 (33) -0.0065 (20) -0.0006 (27) 

Table 4. Modulation parameters obtained after the last refinement 

The  m o d u l a t i o n  func t ion  is def ined in (19). S t a n d a r d  dev ia t ions  in the last digits are given in pa ren theses .  

Atl AI2 Al~ Bii Bl2 Bis 
Nb -0.001 (5) 0 -0.0001 (5) 0 -0.0061 (8) 0 
Si 0.002 (21) -0.0025 (25) 0.0028 (8) 0.051 (9) -0.0057 (14) 0.0(109 (111 
Ho -0.0035 (131 --0.0088 (6) -0.0006 (2) 0.0003 (12) -0.0201 (6) -0.0013 (2) 
$2 0.009 (6) 0.0023 (30) -0.0005 ( 11 ) 0.005 (6) 0.009 (3) 0.0006 (9) 

A2t A22 A23 B21 B22 B23 

Nb -0.0065 (21) 0 0.0001 (4) 0 0.0005 (8) 0 
Ho -0.0049 (6) -0.0027 (7) -0.0018 (2) 0.0062 (6) 0.0002 (8) -0.0014 (2) 

The modulat ion functions are written as 

o~-~ 

Ui (2vs4)  ~--- ~ A,, i  sin (27rnX¥.~4) 
n = !  

+ B,,~ cos (27rn2~4) (19) 

for i = x, y, z. The symmetry  restrictions for Nb imply 
that, for that atom, A,y = B,x = B,z = 0. It appeared  
feasible to refine the first harmonics  of  the modula t ion  
functions of  both independent  sulfur atoms while, 
for the metal atoms, two harmonics  could be deter- 
mined. A final refinement was per formed on the basic 
structure parameters ,  scale factor, twin volume ratio 
and the modulat ion parameters  on the observed 
reflections. The results are summarized  in Tables 3 
and 4. 

The partial R factors show an improvement  of  the 
fit on all reflection groups,  as compared  to the basic 
structure. The most dramat ic  improvement  is for the 
NbS2 subset, which can mainly be at tr ibuted to an 
improvement  of the fit to the 1 KLO reflections. 

Description of the structure 

The improvement  of  the partial  R factor for the NbS2 
subsystem on introducing the modula t ion shows the 
impor tance  of  the modula t ion  for fitting the observed 
diffraction intensities (Table 2). The effect of  the 
modula t ion  on the structure can be visualized by 
studying interatomic distances. It has been shown 
that the structural consequences  of  the incommensu-  

rateness is best studied by calculat ion of  the inter- 
a tomic distance as a function of  the coordinates  along 
the d addit ional  dimensions  (van Smaalen,  1991c, 
1992). 

The positions of  the atoms can be written as the 
sum of a basic structure position and the modula t ion  
function (van Smaalen,  1991c, 1992): 

/x - 
X,,i(/[2, ) = Xvi(I,.£ ) + Uvi( Xvs4). ( 2 0 )  

The modula t ion  function is given by (19). The basic 
structure position for the subsystems v = 1, 2 are 

X'li = nli-~-X°li, i =  1, 2, 3; (21a)  

221 = n2t  + X ° l  - -  t ;  (21b) 

o x2i = n2i+xzi, i = 2, 3. (21c) 

The arguments  of the modula t ion  functions can be 
interpreted as the fourth coordinate  in the superspace  
description of  the structure;  they are: 

0 0 
-'~'l.s4 = O~o(nl 1 '~- X l l )  "~ ' y ( n l 3  + x13)  + t ;  (22a)  

= __ - 1 0 x2s4 a~T'(n2, +x°, t)-O~o y(n23+x23). (22b) 

Each value of  t specifies a different, but equivalent,  
descript ion of  physical space. It is easily seen that 
different values of  t cor respond to a relative shift of  
both subsystems along the mutual  incommensura te  
direction [(21)]. The incommensura teness  ensures 
that such a shift does not lead to a different structure. 
The required changes of  the phases of  the modula t ion  
functions are incorporated in (22). The interatomic 



SANDER VAN SMAALEN AND VACLAV PETRi(~EK 617 

distances as a function of t in one period along that 
axis then summarize all possible distances to be 
encountered in the physical space (van Smaalen, 
1991b, ¢; 1992). The distances at a single value of t 
from one atom to all others give the local environment 
of that atom somewhere in the crystal. In this way, 
a comprehensive plot can be made of all environments 
present. 

Projections of the structure along a*l and a* v 2 ,  

respectively, are given in Fig. 1. Fig. l(b) clearly 
shows the incommensurateness between the two sub- 
systems. From Fig. 1, it follows that the shortest 
interatomic distances between the subsystems occur 
between Ho of the second subsystem and S of the 
first subsystem. In Fig. 2, the distances from a single 
Ho atom to all sulfur atoms of the other subsystem 
are given. The sulfur atom closest to Ho is described 
by tracing the line from AI to B, then from B to A 2 ,  

and so on. It is found that the distance between Ho 
and the nearest sulfur atoms of NbS2 varies only from 
2.72 to 2.85 ]k (solid curves) depending on the Ho 
atom chosen. This variation is less by 0.04 ~ than the 
variation of this distance in the corresponding basic 
structure. 

An important feature is that the modulation pro- 
duces an elongation of the shortest distance (in A2) 
from 2.67 A in the basic structure to 2.72 A in the 
real modulated structure. This shows the strong corre- 
lation between the modulation and the intrinsic 
incommensurateness already present in the basic 
structure. This effect is similar to that observed in the 
other misfit layer compounds for which the modu- 
lated structure has been determined (van Smaalen, 
1992). It signifies the importance of the modulation 
for a proper interpretation of the structure. 

.,J 
u~ 

3 .40  

3 .20  

3.00 

2 .80  

2 .60  

. ,A1 . - . _ i  . ~ ' :  

A2 
-0.20 0100 0120 0140 0.60 

t 

Fig. 2. Coordination of Ho (~,=2) by SI (v= 1) as a function of 
t. The curves marked A t and A 2 correspond to distances between 
an Ho atom and S1 atoms differing by 0.5 in their y coordinate. 
Solid lines and dotted lines denote the modulated structure and 
the basic structure, respectively. 

Concluding remarks 

Twinning can be the origin of diffraction spots at 
positions which do not belong to the reciprocal lattice 
of the structure of a corresponding non-twinned crys- 
tal. In this paper, we have shown that such a diffrac- 
tion pattern can be described by an integer indexing 
on four or more reciprocal vectors. This description 
of the diffraction pattern of a twinned crystal is 
equivalent to the description of the diffraction pattern 
of an incommensurate crystal, in particular of an 
incommensurate intergrowth compound. Of course, 
the structural effects of twinning are completely 
different from the special structural characteristics of 
an intergrowth compound, or any other incom- 
mensurate crystal. 

A principal difference between the effects of twin- 
ning and intergrowth is that the latter type of com- 
pounds are composed of interacting modulated sub- 
systems, in principle leading to diffracted intensity at 
all integer linear combinations of the ( 3 + d )  
reciprocal vectors (d -> 1). A twinned crystal is com- 
posed of individual diffracting microcrystals 
(domains). There will be intensity only at the nodes 
of the reciprocal bases of the individual domains; 
satellite reflections are absent. A twinned incom- 
mensurate crystal can also exist. It will lead to a 
diffraction pattern with an integer indexing on the 
basis of m -> 3 + d reciprocal vectors. 

The domains in a twinned crystal can be character- 
ized by orthogonal transformations that define the 
orientation of each domain with respect to a fixed set 
of axes, in particular with respect to the reciprocal 
basis of the first domain. We have shown that the 
matrix representations of the twin operators on the 
set M, of reciprocal vectors used for the integer index- 
ing [(2)] lead to a comprehensive expression for the 
diffracted intensity at each possible diffraction point. 
The use of M, as a reciprocal basis makes it easy to 
determine which domains contribute to each spot 
[(4)]. Therefore, it is possible to include in the 
refinement many more measured intensities than in 
an ordinary approach. 

The theory [(2)-(4)] has been implemented in the 
computer program C O M P R E F  (PetH~ek, Maly, 
Coppens et al., 1991) of the program system J A N A  
(PetH~ek, Maly & Cisarova, 1991) and it has been 
applied to the refinement of the structure of the inor- 
ganic misfit layer compound ( H o S ) I . 2 3 N b S 2  . An 
excellent agreement between observed and calculated 
intensities was obtained. The main part of the modu- 
lation is on Ho and on the sulfur a toms~f  the NbS2 
subsystem. Its principal effect is to increase the short- 
est distance between the subsystems, in accordance 
with the results obtained for other misfit layer com- 
pounds (van Smaalen, 1992). 
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Abstract 

The modulated structure in (Sr, Ca)14Cu24041 has 
been studied using electron diffraction and high- 
resolution microscopy. The structure can be con- 
sidered as consisting of two interpenetrating substruc- 
tures. The first sheet-like substructure is shown to be 
hardly modulated while the second substructure, con- 
siting of c-oriented chains, contains most of the modu- 
lation. High-resolution electron microscopy allows 
either separate imaging of the two substructures or 
identification of the misfit between them. 
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I. Introduction 

The compound (Sr, Ca)14Cu24041 w a s  discovered by 
Subramanian, Torardi, Calabrese, Gopalakrishnan, 
Morrisey, Askew, Flippen, Chowdhry & Sleight 
(1988) as an unwanted by-product of the crystal 
growth of Bi-based superconducting materials, and 
by Mehbod, Van Lathem, Deltour, Duvigneaud, 
Wyder, Verwerft, Van Tendeloo & Van Landuyt 
(1990) as the secondary phase in iron-doped Bi-Sr- 
Ca-Cu-O superconducting compounds. Although 
the present material is semiconducting and not super- 
conducting, it is of interest because of its peculiar 
structure, which was determined by X-ray diffraction 
soon after the discovery of this new phase (McCarron, 
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